Keresés

Részletes keresés

mégjobb Creative Commons License 2003.07.18 0 0 163
"Pontosabban azt állítottad, hogy ez a gyorsulás végtelenhez tart, ha a kötél tömege 0-hoz."

Nem én állítom, hanem Newton II. tövénye intézkedik így, mely minden testre, a kötélre is érvényes. És attól, hogy egy problémamegoldás közben elhanyagolhatónak vesszük valaminek a tömegét, a valőságot nem tudjuk megváltoztatni. Nem tudom, vitatja-e valaki azt, hogy ha egy testnek megváltozik a sebessége, akkor az gyorsul és ilyenkor tetszik, nem tetszik, a testre ható erők eredője 0-tól különböző. Én amikor ebbe az eszmecserébe bekapcsolódtam, egy rosszul megfogalmazott kérdés ellen emeltem szót:

"3. Két egyforma tömegű ember kötelet húz. Hogyan képes egyikük elhúzni a másikat, ha Newton 3. törvénye szerint ugyanolyan erőt fejtenek ki egymásra?"

Azt már lejjeb megírtam, hogy 3. törvényből semmiképpen nem következik az, hogy a kötél végeire egyforma erők hatnak. De ez az egyformaság itt valami dogmává merevedett. Azt sohasem vitattam, hogy a talajjal való tapadás biztosítása fontos a versenyzők szempontjából. Egyszerűen arról van szó, hogy ez az eset is szépen értelmezhető a Newton-i törvények helyes használatával. mindenféle belemagyarázás és elhanyagolás nélkül.
Azaz legyek pontos, egy elhanyagolás csak van, nem foglalkoztunk a kötélre ható gravitációs erővel, emiatt a kötél közepének van egy kis "belógása" és a végekre ható erők a vízszintessel bezárnak egy kis szöget.

Előzmény: Simply Red (153)
notwe Creative Commons License 2003.07.18 0 0 162
Statikus eset: Az embert törzsét és lábát vegyük merevnek. Így 4 erő (2 erőpár) hat rá: gravitáció-talaj nyomóereje (függőleges), és a súrlódási erő (esetleg lehet ez is nyomóerő)- kötélerő (vízszintes).A két (ellentétes) erőpár forgatónyomatékának nyilván egyezni kell. A kifejthető maximális erőt a bedőlés szöge, a súrlódás, és az izom ereje befolyásolja. (esetleg a kar szakító szilárdsága és a fájdalomküszöb, de ezt most kihagynám:) Nagyobb bedőléssel a függőleges erőpár távolsága nő (de az erők változatlanok): nő a forgatónyomatéka. A vízszintes erőpárnál az erők így nőhetnek, mert most nagyobb forgatónyomatékot kell biztosítani kisseb erőkarral. Így a kifejthető erő ctg(alfa)-val megy. (merőlegesen állva 0, teljesen lefeküdve elvileg végtelen)

HÚÚ most mennem kell, majd folytatom, de még csak annyit, hogy különbséget kell tenni majd aközött, hogy a karon az erőt az inak és izületek, vagy az izmok közvetítik. (aktív vagy kényszererőről van-e szó)

Előzmény: luciferke (160)
luciferke Creative Commons License 2003.07.18 0 0 161
maradva a betonos példánál és tekerjék a kötelet a kezükre. Ki fog győzni, és hogyan fog zajlani a győzelem az erők szempontjából. melyik hogy fog nőni, és mikor lesz vége.
Előzmény: notwe (159)
luciferke Creative Commons License 2003.07.18 0 0 160
továbbra is kérdezem, hogy egy ember kifejthet-e nagyobb erőt a kötélre, mint a föld az emberre.
Előzmény: notwe (159)
notwe Creative Commons License 2003.07.18 0 0 159
"A hagyományos kötélhúzásnál viszont általában nem a kötél fogása a gyenge pont, legalábbis az én tapasztalataim szerint."

Ez így van, hiszen akár körbe tekerhetik a kezüket a kötéllel. Ha pedig nem, akkor a maximális súrlódást a kötél és a kéz között a szorító erő határozza meg, tehát ha ez döntene, gyakorlatilag akkor is az erő számít. De mint írtad nem ez a leggyengébb pont. De nem is a talajon kifejthető súrlódás. (ahhoz nem kell egy betontömb, hogy praktikusan elhanyagolható legyen a vizsgálata, elég egy jó cipő vagy egy bucka) Ami számít az az izomzat által kifejthető maximális erő (legtöbbször a karé, mert a törzs és a láb erősebb).

Előzmény: luciferke (158)
luciferke Creative Commons License 2003.07.18 0 0 158
ki fog győzni, ha mindkét csapat minden embere egy-egy hatalmas betonlap mögött van, amin van egy lyuk, amin kifér a kötél (persze nem ér hozzá a lyuk falához)? A tapadás itt praktikusan végtelen, jól le vannak rakva a betonlapok. Szerintem az fog győzni, akinek a marka erősebb. De itt sem számít a kötél tömege.
A hagyományos kötélhúzásnál viszont általában nem a kötél fogása a gyenge pont, legalábbis az én tapasztalataim szerint.
Előzmény: notwe (155)
luciferke Creative Commons License 2003.07.18 0 0 157
A tömeg, a súrlódás stb. csak abban az esetben játszanak szerepet, ha az emberek által maximálisan kifejtethető erőnél �gyengébb láncszemet� jelentenek
Szerintem mindig a tapadás lesz a gyenge láncszem. Ugyanis a gyengébb emberek nem tudják egyszerre elég magasan tartani a tapadási erő maximumát, és a kötélre kifejtett erőt. Tehát a gyengébb oldal egy bizonyos erő fölött kénytelen testhelyzetet, lábtartást, egyebeket váltani, ami csökkenti a tapadás maximumát, cserébe a kötélre kifejtett erő ellensúlyozásaként. Ahogy nő az ellenfé éáltal kifejettt (és így a gyengébbek) által is kifejtett erő a kötélre, úgy csökken a gyengéknél a tapadás maximuma, míg végül egyenlő nem lesz a kötélre kifejtett erővel. Ekkor már nem tudják tovább növelni a kötélre kifejtett erőt, hiszen további testtartás változtatás a tapadás megszűnésével járna.
Előzmény: notwe (136)
luciferke Creative Commons License 2003.07.18 0 0 156
Normális esetben nem a súrlódás számít, hanem a maximálisan kifejthető emberi erő!
Ez azt jelenti, hogy egy erős oldal nagyobb erőt tud kifejteni a kötélre, mint a tapadás az emberekre?
Előzmény: notwe (155)
notwe Creative Commons License 2003.07.18 0 0 155
"Remélem semmit nem számoltam el."

Csak a lényeget :) Normális esetben nem a súrlódás számít, hanem a maximálisan kifejthető emberi erő! Kérlek vezesd le akkor azt is, hogy a szkanderesek hogyan nyomják le egymást. (talán ők is megcsúsznak?

Előzmény: luciferke (154)
luciferke Creative Commons License 2003.07.18 0 0 154
Na akkor nézzük már elejétől a problémát. Legyen a kötél tömege 1 kb, az embereké oldalanként 300 kg. Nekifeszülnek, húzzák egymást, de nem mozdulnak. Az emberekre, valamint a kötélre ható erők eredője 0, egyik sem mozdul. Egyik oldalon növelik az erőt, és erre a másikon is. Még mindig nyugalom. Egészen addig, amíg az egyik oldal el nem éri a számukra elérhető (testhelyzettel és mindennel együtt) maximális tapadási erőt. Ennél nagyobb erőt nem tudnak kifejteni a kötélre. Még mindig nyugalomban vannak, a kötél tömege eddig tényleg nem számított.
A leendő győztes oldal még tovább növeli a erőt, mondjuk 1N-nal. Ez a kötélnek 1m/s2 gyorulást okoz. De mivel az embereknek is ennyivel kell gyorsulni, hiszen fogják a kötelet, ezért az emberekre 300N eredő erőnek kell hatni. Ez nyilvánvalóan nem az a +1N lesz, amit a másik oldalon még hozzátettek, hanem a lecsökkent súrlódás miatt jelenik meg. Persze elképzelhető, hogy nem 1m/s2 lesz a gyrosulás, hiszen ha a súrlódás nem csökken eléggé, akkor az fogja limitálni a dolgot.
Mi történik 10kg-os kötélnél? A kötél gyorsulása most csak 0,1m/s2, tehát ennyi az embereké is, amihez 30N eredő kell. Az emberek megintcsak megindultak a vesztes oldalon, és innentől csak egy megoldás van számukra. Megállni, és újra a tapadást használni. Ha nem tudnak megállni, akkor könyörtelenül elhúzzák őket, persze ekkor már akár gyorsulás nélkül is. Azaz a kötél tömege itt sem számít.
Mi van egy 0,1kg os kötéllel? A gyorsulása 10m/s2 lenne. Lenne, mert ekkor az emberek gyorsulása is ennyi lenne, és az eredő erő meg 3000N. Ennyit meg ne csökkenjen most a súrlódás. A max csökkenés legyen 600N, azaz 2m/s2 gyorsulása legyen az emereknek, és így a kötélnek is. Ekkor a kötélre ható eredő erő 0,2N, vagyis még kisebb is, mint az a bizonyos 1 N.
A kötél tömegét tetszőlegesen tovább csökkenthetjük, a két vége között az erők különbsége 0-hoz tart, mégis mindig el fogják húzni az veszteseket.
Ez a szép az ilyen határesetes feladatokban. Mivel a tapadási erejük határán vannak, ezért elméletben akár egy légy landolása az egyik ember vállán megindíthatja a lavinát.

Remélem semmit nem számoltam el.

Előzmény: mégjobb (151)
Simply Red Creative Commons License 2003.07.17 0 0 153
Pontosabban azt állítottad, hogy ez a gyorsulás végtelenhez tart, ha a kötél tömege 0-hoz. Tehát ezt a bizonyos néhány cm-t tetszőlegesen nagy gyorsulással teszi meg a kötél, ha a tömege elég kicsi?
Előzmény: mégjobb (151)
mégjobb Creative Commons License 2003.07.17 0 0 152
"Az igaz, hogy a feladatban 3 test szerepel, ezért indokolatlan a Newton 3. törényre hivatkozni, de a 3. test nem a kötél, hanem a föld, és valóban a surlódáson múlik a dolog."

A Föld már a 4. a szituációban szereplő testek sorában, mindegyik versenyző kölcsönhatásban van vele. A kötél nincs.

Előzmény: Bummm (132)
mégjobb Creative Commons License 2003.07.17 0 0 151
"Tehát azt állítod, hogy minél kisebb tömegű kötelet húznak, annál nagyobb gyorsulással mozognak a kötélhúzók."

Pontosan ez következik Newton II. törvényéből. De ne felejtsd el, hogy a gyorsuló mozgásállapot ennél a kötélhúzásnál csak nagyon rövid ideig tart, ami alatt a kötél és a belé kapaszkodók csak néhány cm-t mozdulnak el. Ismétlem, ha a kötél sebessége már nem változik, akkor a gyorsulás 0.

Előzmény: Simply Red (150)
Simply Red Creative Commons License 2003.07.17 0 0 150
De közelíteni lehet hozzá. Tehát azt állítod, hogy minél kisebb tömegű kötelet húznak, annál nagyobb gyorsulással mozognak a kötélhúzók.
Előzmény: mégjobb (149)
mégjobb Creative Commons License 2003.07.17 0 0 149
Így lenne, ha létezne 0 tömegű kötél. De ilyet még nem állítottak elő.
Előzmény: Simply Red (147)
mégjobb Creative Commons License 2003.07.17 0 0 148
"Viszont elhagyva rájövünk, hogy nem ám ez a kis plusz erő okozta a túloldali népek buktáját, hanem az, hogy valami miatt rosszul játszottak a tapadással, ami átugrott csúszási surlódásba, és innen már borul a dolog, mert a csúszási súrlódás mindig kisebb, mint a tapadási"

Ha valamelyik versenyző megcsúszik, már nem tudja ugyanakkora erővel húzni a kötelet, mint a csúszása előtt, ezért a túloldalon nagyobb a húzóerő, gyorsul a kötél.

Előzmény: luciferke (131)
Simply Red Creative Commons License 2003.07.17 0 0 147
Ha a kötél feszes, akkor az őt húzók nyilván vele együtt mozognak, ugyanakkora gyorsulással

Az előző kijelentéseddel együtt ez azt jelenti, hogy 0 tömegű kötelet használva a kötélhúzók is végtelen gyorsulással mozognak. Biztos, hogy így van ez?

Előzmény: mégjobb (146)
mégjobb Creative Commons License 2003.07.17 0 0 146
Ha a kötél feszes, akkor az őt húzók nyilván vele együtt mozognak, ugyanakkora gyorsulással.

"Szóval nem mindig ugyanolyan gyorsulással, mint ahogy húzzák?"
Bár ezt a kérdést így szó szerint nem értem.

Előzmény: Simply Red (144)
mégjobb Creative Commons License 2003.07.17 0 0 145
"hogyan nyomja le a szkanderes a másikat?"

A szkanderezők kezei természetesen egymással vannak kölcsönhatásban, ezért az egyik által a másikra kifejtett erő ugyanakkora nagyságú, mint a másik által az egyikre. (Elnézést, ha ez kissé szájbarágósnak hat...). Mindegyik versenyző igyekezete arra irányul, hogy a másik alkarját lefordítsa az asztalra. Ezt az általa kifejtett erő forgatónyomatékával igyekszik megoldani, amit az ellenfél a felkar, vagy a vállizomzat (anatómiai ismereteim igen hiányosak)segítségével kifejtett ellenkező irányú forgatónyomatékkal igyekszik megakadályozni. Amelyiknek ez nem sikerül, az a vesztes.

Előzmény: notwe (136)
Simply Red Creative Commons License 2003.07.17 0 0 144
(ha 0 lenne a tömege végtelen nagy gyorsulással)

Aha. Tehát, minél kisebb a tömege, annál nagyobb gyorsulással fog mozogni? Szóval nem mindig ugyanolyan gyorsulással, mint ahogy húzzák?

Előzmény: mégjobb (143)
mégjobb Creative Commons License 2003.07.17 0 0 143
"A kötél tömege lényegtelen"

Egyetértek.

Az életben a versenyzők létező kötelet húznak, aminek, mint minden testnek tömege van. A verseny addig tart, míg a kötél el nem mozdul. Van tehát egy igen rövid időtartam, ami alatt a kötél gyorsul (ha 0 lenne a tömege végtelen nagy gyorsulással), tehát a rá ható erők eredője nem nulla! Itt a lényeg, ezt elhanyagolni hiba! Ha az erő eredője 0-tól különbözik, akkor valamelyik versenyző nagyobb erőt fejt ki a kötélre, mint az ellenfele. Ha már a kötél sebessége nem változik, akkor az eredő ismét 0 lesz. Ez a valóság.
Természetesen a versenyzők és a talaj kötötti kölcsönhatásnak szerepe van abban, hogy ők szilárdan álljanak a lábukon, de a kötél mozgásállapotát csak az őrá ható erők szabják meg, ahogyan ezt Newton munkássága óta tudjuk.

Előzmény: luciferke (142)
luciferke Creative Commons License 2003.07.17 0 0 142
Az elhanyagolások segítségével modellt alkutunk, amivel próbáljuk értelmezni a valóság történéseit.
Valamint megpróbáljuk megfogni a lényeget.
A kötél tömege lényegtelen. Próbáld megoldani 0kg-os, 1kg-os meg 5kg-os kötéllel, miközben oldalanként pár ember húzza. Minimális változást fog jelenteni.
Mellesleg alkalmazzuk rá a dinamika alaptörvényét, csak épp úgy, hogy a rá ható erők eredője 0, hiszen nincs tömege.

hogy éppen a viadal főszereplőjének a kötélnek a tömegét kéne elhanyagolni
A kötél pontosan hogy nem főszereplő fizikai szempontból. Épp ezt mutatja meg, hogy elhanaygolt kötéltömeggel is ugyanaz jön ki. Foghatnak egy nagyon rövid, vékony erős kötelet is, aminek a tömege tényleg minimális.

Előzmény: mégjobb (141)
mégjobb Creative Commons License 2003.07.17 0 0 141
"(gyorsítania kell saját magát). "

Ez tudtommal eddig csak Münghausen bárónak sikerült.

Leszögeznék néhány dolgot.

A klasszikus mechanikában Newton törvényei mindig és minden testre érvényesek (természetesen inerciarendszerben). A 3. is, nem én döntöm el, hogy most figyelembeveszem, vagy nem. Az erő mindig két test kölcsönhatásának a jellemzője. A kötelet húzó emberek nem egymással, hanem a kötéllel vannak kölcsönhatásban, nomeg a talajjal is nyilván, hiszen így biztosíthatják egyensúlyukat a versengés közben. Nagyon furcsálom, hogy éppen a viadal főszereplőjének a kötélnek a tömegét kéne elhanyagolni, és mellőzni rá nézve a dinamika alaptörvényének az alkalmazását. Az elhanyagolások segítségével modellt alkutunk, amivel próbáljuk értelmezni a valóság történéseit. De mikor a valóság nem bonyolult, akkor szükségtelen ehhez az eszközhöz nyúlni.

Előzmény: Törölt nick (134)
fizimiska Creative Commons License 2003.07.17 0 0 140
Na igen, miután elküldtem, gondoltam rá hogy nem ez a kérdésed. :)
Szabad megtudni pontosan mire gondoltál?
Előzmény: notwe (138)
Simply Red Creative Commons License 2003.07.17 0 0 139
Azért ez így egy picit félrevezető. Most látszik, hogy nagyon is fontos, hogy 0 tömegűnek vegyük a kötelet! Mert ebben a megkapaszkodós verzióban sem az a lényeg, hogy a kötélre melyik tud nagyobb erőt kifejteni, hanem az, hogy saját testrészei között mekkora erőt tud kifejteni (= ki az erősebb). Ez világosan létszik, ha két függőleges falhoz rögzített rugó között folyik a kötélhűzó verseny (a nagyobb rugóállandójú győz, függetlenül attól, hogy 0, vagy nem 0 a kötél tömege).
Előzmény: notwe (136)
notwe Creative Commons License 2003.07.17 0 0 138
Persze! Ennek felel meg a kötélhúzásban, hogy nem csúszik meg a versenyző lába. Mint, ahogy szkanderezésnél sem az a fontos, hogy mekkora a tömeg és a súrlódás. (normális esetben)

(a kérdésemben igazából másra gondoltam:)

Előzmény: fizimiska (137)
fizimiska Creative Commons License 2003.07.17 0 0 137
hogyan nyomja le a szkanderes a másikat?

Úgy hogy a másik kezével kapaszkodik.

Előzmény: notwe (136)
notwe Creative Commons License 2003.07.17 0 0 136
Igaza van Mégjobbnak abban, hogy a kötélhúzásos feladat helyes értelmezését a kötél 0 tömege nehezíti. (de ő sem a lényeget említi) Hiszen ebből következik, hogy a kötélre ható erőknek egyformának kell lennie, mintha nem is lenne érdekes ki milyen erős. A helyzet pedig ennek pont fordítottja: az húzza el a másikat, aki erősebb. A tömeg, a súrlódás stb. csak abban az esetben játszanak szerepet, ha az emberek által maximálisan kifejtethető erőnél „gyengébb láncszemet” jelentenek. Ekkor természetesen nem az emberi erő számít. Korrekt versenyt viszont nem jégen szoktak rendezni, hanem olyan talajon, ahol a versenyzők kellően meg tudják vetni a lábukat (akár egy buckában stb.) és így a körülmények nem maximálják a kifejthető emberi erőt. Ilyen körülmények között a kötélhúzás is erősport, akár pl. a szkander. Mielőtt jobban belekezdenék, feltenném azt a költői kérdést: hogyan nyomja le a szkanderes a másikat?
Előzmény: Bummm (132)
Simply Red Creative Commons License 2003.07.17 0 0 135
Ügyes!
Előzmény: Törölt nick (134)
Törölt nick Creative Commons License 2003.07.17 0 0 134
A jégen álló erősnek egyszerűen nincs módja, hogy nagyobb erőt fejtsen ki a kötélre, mint a másik, na itt számít a 3. törvény

Bizonyos körülmények között azonban a jégen álló is elhúzhatja a másikat. A jégen álló tömegének sokkal nagyobbnak kell lennie a másikénál és kézzel nagyon nagy erőt kell tudnia kifejteni (gyorsítania kell saját magát). Ugyan ő is csuszik a vonal felé, de a másik is. A két test tömege, a kifejtett erő és súrlódási erők viszonya határozza meg, hogy ki ér elöbb a vonalhoz.

De a kötélerő itt is azonos mindkét húzó esetében. (A kötél gyorsulását elhanyagolva.)

Előzmény: Simply Red (133)

Ha kedveled azért, ha nem azért nyomj egy lájkot a Fórumért!